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The Landscape of C. elegans 3′UTRs
Marco Mangone,1* Arun Prasad Manoharan,2* Danielle Thierry-Mieg,3* Jean Thierry-Mieg,3*
Ting Han,2* Sebastian D. Mackowiak,4 Emily Mis,1 Charles Zegar,1 Michelle R. Gutwein,1
Vishal Khivansara,2 Oliver Attie,1 Kevin Chen,1,4 Kourosh Salehi-Ashtiani,5,6 Marc Vidal,5,6
Timothy T. Harkins,7 Pascal Bouffard,8 Yutaka Suzuki,9 Sumio Sugano,9 Yuji Kohara,10
Nikolaus Rajewsky,4 Fabio Piano,1,11† Kristin C. Gunsalus,1,11† John K. Kim2†

Three-prime untranslated regions (3′UTRs) of metazoan messenger RNAs (mRNAs) contain numerous
regulatory elements, yet remain largely uncharacterized. Using polyA capture, 3′ rapid amplification of
complementary DNA (cDNA) ends, full-length cDNAs, and RNA-seq, we defined ~26,000 distinct 3′UTRs
in Caenorhabditis elegans for ~85% of the 18,328 experimentally supported protein-coding genes and
revised ~40% of gene models. Alternative 3′UTR isoforms are frequent, often differentially expressed
during development. Average 3′UTR length decreases with animal age. Surprisingly, no polyadenylation
signal (PAS) was detected for 13% of polyadenylation sites, predominantly among shorter alternative
isoforms. Trans-spliced (versus non–trans-spliced) mRNAs possess longer 3′UTRs and frequently contain no
PAS or variant PAS. We identified conserved 3′UTR motifs, isoform-specific predicted microRNA target
sites, and polyadenylation of most histone genes. Our data reveal a rich complexity of 3′UTRs, both
genome-wide and throughout development.

The 3′ untranslated regions (3′UTRs) of
mRNAs contain cis-acting sequences that
interact with RNA-binding proteins and/or

small noncoding RNAs [such as micro RNAs
(miRNAs)] to influence mRNA stability, localiza-
tion, and translational efficiency (1–3). The dif-
ferential processing of mRNA 3′ ends has evident
roles in development, metabolism, and disease
(4, 5). Despite these critical roles, genome-wide
characterization of 3′UTRs lags far behind that of
codingsequences (CDSs).Even in thewell-annotated
genome of Caenorhabditis elegans, nearly half
(~47%)of the20,191genes annotated inWormBase
(release WS190) (6, 7) lack an annotated 3′UTR,
and only ~1180 (~5%) are annotated with alter-
native 3′UTR isoforms (fig. S1, A and B).

We have taken a multifaceted, empirical ap-
proach to defining the 3′UTR landscape in C.
elegans (figs. S2 to S5 and tables S1 to S4) (8). We
prepared developmentally staged cDNA libraries
composed of mostly full-length clones spanning
from 5′ capped first base to polyadenylated (polyA)
tail, and we annotated 16,659 polyA addition sites
in 11,180 genes by manually curating ~300,000
Sanger capillary sequence traces in National Center
for Biotechnology Information (NCBI) AceView
(9). We developed a method to capture the 3′ ends

of polyadenylated transcripts genome-wide by
deep sampling and generated a comprehensive
developmental profile comprising more than 2.5
million sequence reads from Roche/454 (fig. S2 to
S5 and tables S1 to S4). We cloned 3′ rapid am-
plification of cDNAends (RACE) products directly
targeting 3′UTRs for 7105 CDSs (6741 genes) in
both the Promoterome (10) and ORFeome (11)
collections, and we recovered one or more se-
quenced isoforms for 85% of the targets (figs. S2
and S5 and tables S1 to S4) (8, 12). Finally, we
remapped and annotated polyA addition sites in
published RNA-seq data (13, 14).

All data sets weremapped, cross-validated, con-
solidated, and filtered to eliminate obvious exper-
imental artifacts, including internal priming on
A-rich stretches (Fig. 1A) (8). These data sets are
not yet saturated:Whereas formost genes (11,516or
73%), at least one 3′UTR isoform is supported by
two or more experimental approaches, 47% of tran-
scripts are observed by only onemethod (in part due
to limitations specific to each protocol) (Fig. 1 and
tables S3 andS4) (8). The resulting 130,090 distinct
polyA sites, identified at single-nucleotide resolu-
tion and supported by more than 3 million inde-
pendent polyA tags, were clustered into 26,967
representative polyA sites. Due to biological varia-

tion, 86% of tags occur within 4 nucleotides of rep-
resentative sites, although individual polyA tags
may spread over ~20 nucleotides (fig. S6).

Linking polyA sites to their parent genes
proved to be a challenge, as many previous gene
models were incomplete or incompatible with our
new data. Using all available empirical evidence,
we reannotated in AceView the C. elegans gene
models (9). Of the 15,683 protein-coding genes
with both polyA sites and cDNA support, 57%
confirm the structure of WormBase WS190 gene
models. The remainder encode different proteins,
usually representing different cDNA-supported
splice patterns: ~25% share the same stop codon,
~12% use a different stop (hundreds of those cor-
respond to fusions or splits of earlier genemodels),
and ~6% are not yet annotated in WormBase
(supporting data sets S1 and S2).

This integrated collection, herein called the
3′UTRome (fig. S1 and data set S2), provides evi-
dence supporting 3′UTR structures for ~74% of
all C. elegans protein-coding genes in WormBase
WS190, including previously unannotated iso-
forms for ~7397 genes (fig. S1, A to D). The
length distribution of 3′UTRs parallels that in
WormBase (fig. S1D), with a mean of 211 nu-
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cleotides (nt) (median = 140 nt). The 3′UTRome
matches 61%ofWormBase 3′UTRswithin T10 nt
(6714 polyA ends for 6563 genes) and contains
thousands of longer or shorter isoforms (fig. S1A).
We identified 6177 polyA ends for 4466 genes
with no previous 3′UTR annotation and discovered
1490 polyA ends for 1031 genes not yet represented
in WormBase (fig. S1A and data sets S1 to S3).

We annotate more than one 3′UTR isoform
for 43% of 3′UTRome genes (figs. S1 and S7). Of
these, a majority (65%) reflects alternative 3′-end
formation at distinct locations in the same terminal
exon for proteins using the same stop; the remain-
der use distinct stops in the same last exon or dis-
tinct last exons. Very rarely (79 examples), an intron
within the 3′UTR is excised or retained (fig. S8),
potentially affecting functional sequence con-
tent elements (fig. S8C). Indeed, putative binding
sites for miRNAs (this study) or ALG-1 (15)
were identified in the variable regions of some
of these transcripts. About 2% of genes possess
five or more 3′UTR isoforms (Fig. 1A and figs.
S1B and S7).

To identify putative cis-acting sequences that
may play a role in 3′-end formation, we scanned
the 50 nt upstream of the cleavage and polyA ad-
dition sites for all possible 5- to 10-mers and as-
signed themost likely polyadenylation signal (PAS)
motif to each 3′UTR using an iterative procedure
based on enrichment and centering of the k-mers.
The canonical PAS motif AAUAAA (seen in 39%
of 3′ ends) and many variants differing by 1 to 2 nt
are detected, with distributions all peaking 19 nt
upstream of the polyA site (figs. S9, S10, and table
S5) (8). The canonical signal predominates in genes
with unique 3′UTRs (57%). However, many high-
quality 3′UTRs (3658) lack a detectable PASmotif
altogether (Fig. 1, B and C). All PAS variants are
embedded within a T-rich region that spikes 5 nt
downstream of the PAS motif and extends about
20 nt beyond the cleavage site (Fig. 1D). 3′UTRs
with no PAS tend to be T-rich throughout, except
for a very A-rich eight-nucleotide region just after
the cleavage site (Fig. 1D). Thus, a functional PAS
motif with strict sequence specificity appears dis-
pensable for 3′-end formation in C. elegans.

Among genes with alternative 3′UTRs, suc-
cessive polyA sites show a marked asymmetry:
The longest isoform prefers a PAS,whereas shorter
isoforms more often show no PAS (Fig. 1C and
fig. S11). The distance between alternative polyA
sites peaks at ~40 nt, with resonances at ~80 and
~140 nt (fig. S11A). This regularity suggests that
a physical constraint (possibly queuing transcrip-
tion complexes) could contribute to cleavage and
polyA addition at some upstream sites, which
may, therefore, depend less on instructive cues
from signal sequences.

Because many C. elegans genes undergo trans-
splicing of a splice leader (SL) to the 5′ end of a
nascent transcript (16), we askedwhether any prop-
erties of transcript 5′ and 3′ ends correlate (Fig. 2, A
and B). About 15% of C. elegans genes belong to
transcriptional units called operons, each containing
two to eight genes that can be cotranscribed, cleaved
into separate transcripts, polyadenylated, and trans-
spliced with specific leaders (Fig. 2, A and B). The
first gene in an operon is trans-spliced only to SL1;
downstream genes are usually trans-spliced to 1 of
11 other SLs (SL2 to SL12), although we observed
that two-thirds of these genes occasionally become
trans-spliced to SL1. The processing of adjacent
operon transcript ends (cleavage, polyA addition
to the upstream transcript, and SL addition to the
downstream transcript) is coupled mechanistically
by machinery resembling the cis-splicing apparatus
(17). Comparing 3′UTRs within operons, we ob-
serve that the “first” (SL1-spliced), “middle” (any
gene between first and last), and “last” genes pro-
gressively decrease in average length (from 266 to
213 nt), number of 3′UTR isoforms per gene (from
2.64 to 2.51), and frequency of 3′UTRs with no
PAS (from 23 to 18% in ~1400 sites) (Fig. 2B).

However, only a small fraction (13%) of the
7026 mainly SL1-spliced genes clearly belongs to
an operon, and these genes differ notably from
non-operon SL1-spliced genes in their usage of the
canonical AAUAAA hexamer (22% of 1409 sites
versus 32% of 10,879 sites, respectively). Further-
more, we observed the canonical PAS motif much
more frequently in non–trans-spliced than in SL-
containing transcripts (43% of 5131 sites versus
30% of 14,873 sites) (Fig. 2A). Whereas “stan-
dard” non–trans-spliced genes have ~30% more
3′UTR isoforms per gene than “isolated” ones
having no neighbor within 2 kb (2.4 versus 1.7),
these non–trans-spliced genes are more similar to
each other than to trans-spliced genes, because
they have shorter and fewer 3′UTR isoforms and
higher canonical PAS usage. Thus, trans-splicing
within operons appears to enhance (directly or in-
directly) the activity of noncanonical PAS sequences
upstream, and trans-splicing at the 5′ end cor-
relates with distinct properties at the 3′ end of the
same transcript, independent of 5′-end processing
downstream.

Unexpectedly, the 3′UTRome reveals poly-
adenylated transcripts for nearly all histone genes
(fig. S12 and table S6). The major class of
replication-dependent histones (H2a, H2b, H3,
and H4) is not thought to be polyadenylated in
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Fig. 1. The 3′UTRome and 3′UTR PAS. (A) The number of genes and isoforms detected in, or specific to,
each data set and cumulative totals in WS190 and 3′UTRome annotations. (B) PAS motif frequencies:
AAUAAA (39%), variant PAS (1 to 9%), and no PAS (13%). (C) PAS usage in genes with one or two (short
and long) 3′UTR isoforms. (D) Nucleotide distribution spanning T60 nt around the polyA addition site, in
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centered at –19 nt, show a T-spike at 5 nt downstream of PAS (asterisk), polyA addition site (red arrow), and
T-rich region downstream of cleavage site. The A-rich peak downstream of “no PAS” is not enriched for
AAAAAA, suggesting an A-rich motif at that location rather than artifactual A-rich ends.
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metazoans; instead, their 3′ ends form a stem-
loop structure that is recognized and cleaved sev-
eral nucleotides downstream by U7 small nuclear
ribonucleoprotein and factors such as stem-
loop binding protein (18, 19). C. elegans has 61
cDNA-supported histone genes (9) that all harbor
conserved sequences with 3′ stem-loop potential;
however, they also contain conserved PAS ele-
ments downstream of the hairpin sequence (20).
Because C. elegans histone transcripts have also
been shown to terminate in the typical stem-loop
structure and to be depleted in successive rounds
of polyA selection (20), we were surprised to re-
cover polyadenylated transcripts for 57 histone
genes in multiple, independent data sets (fig. S12
and table S6). This finding suggests that, at least in
C. elegans (and perhaps also in higher metazoans),
the usual route for histonemRNA3′-end processing
may include initial cleavage and polyA addition at
conserved PAS sites, followed by further processing
to remove sequences downstream of the stem-loop.

We searched 3′UTRs for conserved sequence
motifs and other potential functional elements.We
updated our atlas of predicted conserved miRNA
targets for the 3′UTRome, using the PicTar algo-
rithm with new 3- and 5-way multispecies align-
ments (Fig. 3, fig. S13, and table S7). Roughly half
of the newly predicted sites match our previous
predictions (21), but many sites are gained or lost
(fig. S13A and table S7). These differences reflect
improvements in both 3′UTR annotations andmul-
tispecies alignments, which increase the accuracy
of conserved-seed site identification and signal-to-
noise ratios (8). More than 3000 PAS motifs are
positionally conserved among Caenorhabditis spe-
cies, includingwithin alternative 3′UTRs (fig. S13B).
Thus, maintenance of multiple specific 3′ termini
may be functionally important for some genes.
Thousands of unexplained conserved sequence
blocks of varying lengths within 3′UTRs (Fig. 3B
and table S7) may represent previously unrecog-
nized functional elements that await further char-
acterization. In vivo Argonaute (ALG-1) binding
sites (15) overlap significantly with predicted
miRNA target sites but not with other conserved
blocks (table S7), indicating that the latter are,
overall, not directly related to microRNA func-
tion (8). For 1876 convergently transcribed neigh-
boring genes, overlapping 3′ regions could pair as
double-stranded RNA if coexpressed, potentially
triggering endogenous small interfering RNA pro-
duction (22) that could down-regulate cognate
mRNAs (fig. S14 and data set S4).

We examined alternative 3′UTR isoforms in
different developmental stages (Fig. 4) and found a
downward trend in average length and number of
3′UTRs per gene from the embryonic through the
adult stage (Fig. 4, A and B). Among genes ex-
pressed in more than one developmental stage, em-
bryos display the largest proportion of stage-specific
3′UTR isoforms, and these tend toward longer iso-
forms (Fig. 4, B and C, tables S8 and S9, and data
set S5). Some genes switch 3′UTR length coinci-
dent with developmental transitions, most notably
from embryo to L1, L1 to dauer entry, dauer exit to

L4, and in adult hermaphrodites versus males (Fig.
4D, table S9, and data sets S5 and S6). Thus, 3′
UTR-mediated gene regulation may be widespread
in theC. elegans embryo, anddifferential expression
of alternative isoforms may represent a mechanism
to engage or bypass 3′UTR-mediated regulatory
controls in specific developmental contexts (23, 24).

The 3′UTRome compendium evidences sup-
port for multiple mechanisms of transcript 3′-end
formation inC. elegans, including standard PAS-
directed 3′-end formation from a large collection
of PAS variants, regularly spaced “shadow” polyA
addition sites devoid of recognizable signals, and
both operon-dependent and -independent corre-
lations between features at the 5′ and 3′ ends of

the same or of consecutive transcripts that are con-
sistent with the possibility that trans-splicing and
3′-end processing within a gene could occur by
functionally linked mechanisms. We characterize
thousands of previously unknown and alternative
3′UTR isoforms throughout development, define
a comprehensive catalog of PAS elements, dis-
cover a surprising number of polyadenylated tran-
scripts with no discernable PAS, and definitively
document polyadenylation of histone transcripts.
We also identify conserved sequence elements in
3′UTRs that may interact with trans-acting factors
such asmiRNAs andRNA-binding proteins, some
of which occur within variable regions of alter-
native 3′UTRs. A collection of cloned 3′UTRs
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for several thousandC. elegans genes is available
to the research community for high-throughput
downstream analyses and in vivo studies (table
S10 and data set S7) (8).
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Fig. 3. Conserved sequence elements in 3′UTRs. (A) His-
togram distributions of conserved sequence blocks (black,
counts shown at 1/5th scale), conserved miRNA seeds in
three (red; C. elegans, C. remanei, C. briggsae) and five (blue;
C. elegans, C. remanei, C. briggsae, C. brenneri, C. japonica)
species, and nonconserved miRNA seeds (green, 1/25th
scale) along the normalized length of 3′UTRs, in genes with
one isoform (top) or exactly two isoforms (bottom). For genes
with one isoform, the length scale is 100%; for two isoforms,
0 to 50% represents the short-isoform span, and 51 to
100% indicates the span exclusive to the long isoform.
Counts were binned by fraction of total length and, thus,
varied in absolute length. (B) Length distribution (up to 20
nt) of conserved sequence blocks in 3′UTRs (excludingmiRNA
target and PAS sites), in three (blue; n = 16,204 conserved
blocks) and five (red; n = 4758) species. See also table S7.
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Fig. 4. 3′UTRs during development. (A) C. elegans
developmental transitions: embryogenesis, four larval
stages, and adults. In unfavorable environments, L1
larvae arrest in dauer stage and can re-enter the life
cycle as L4 larvae. herm, hermaphrodites. (B) The number of 3′UTR isoforms per gene decreases
significantly during development (blue) (*p ~ 0.004, permutation test). The average length of 3′UTRs
decreases during development (red). Adult males have shorter average 3′UTRs than hermaphrodites.
Embryos show more stage-specific 3′UTR isoforms for genes expressed during multiple developmental
stages (green) (see table S8). (C) Proportion of genes showing stage-specific expression of alternative
3′UTR isoforms (see table S9). Embryos and dauers favor longer 3′UTR isoforms. (D) Differential 3′UTR-
isoform expression during development (ubc-18 shown; see data sets S5 and S6 for details). The bar
chart illustrates the relative abundance of short versus long 3′UTR isoforms for ubc-18 in each stage (sum
per stage = 100%, left y axis). The line graph shows the relative abundance across all stages (sum per
gene across all stages = 100%, right y axis). Green bars highlight differences in 3′UTR isoform usage in
the embryo-to-L1 transition and between adult hermaphrodite and male stages. Green arrows indicate
dauer entry and exit transitions.
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